Optimizer using Evolutionary Algorithm¶
GeneticAlgorithmOptimizer¶
-
class
l2l.optimizers.evolution.optimizer.GeneticAlgorithmOptimizer(traj, optimizee_create_individual, optimizee_fitness_weights, parameters, optimizee_bounding_func=None)[source]¶ Bases:
l2l.optimizers.optimizer.OptimizerImplements evolutionary algorithm
- Parameters
traj (Trajectory) – Use this trajectory to store the parameters of the specific runs. The parameters should be initialized based on the values in parameters
optimizee_create_individual – Function that creates a new individual
optimizee_fitness_weights – Fitness weights. The fitness returned by the Optimizee is multiplied by these values (one for each element of the fitness vector)
parameters – Instance of
namedtuple()GeneticAlgorithmOptimizercontaining the parameters needed by the Optimizer
-
post_process(traj, fitnesses_results)[source]¶ See
post_process()
GeneticAlgorithmParameters¶
-
class
l2l.optimizers.evolution.optimizer.GeneticAlgorithmParameters(seed, popsize, CXPB, MUTPB, NGEN, indpb, tournsize, matepar, mutpar)¶ Bases:
tuple- Parameters
seed – Random seed
popsize – Size of the population
CXPB – Crossover probability
MUTPB – Mutation probability
NGEN – Number of generations simulation should run for
indpb – Probability of mutation of each element in individual
tournsize – Size of the tournamaent used for fitness evaluation and selection
matepar – Paramter used for blending two values during mating
-
property
CXPB¶
-
property
MUTPB¶
-
property
NGEN¶
-
property
indpb¶
-
property
matepar¶
-
property
mutpar¶
-
property
popsize¶
-
property
seed¶
-
property
tournsize¶