Optimizer using Natural Evolution Strategies¶
NaturalEvolutionStrategiesOptimizer¶
-
class
l2l.optimizers.naturalevolutionstrategies.optimizer.
NaturalEvolutionStrategiesOptimizer
(traj, optimizee_create_individual, optimizee_fitness_weights, parameters, optimizee_bounding_func=None)[source]¶ Bases:
l2l.optimizers.optimizer.Optimizer
Class Implementing the separable natural evolution strategies optimizer in natural coordinates as in:
Wierstra, D., Schaul, T., Peters, J., & Schmidhuber, J. (2008). Natural evolution strategies. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence) (pp. 3381-3387).
Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., & Schmidhuber, J. (2010). Exponential natural evolution strategies. In Proceedings of the 12th annual conference on Genetic and evolutionary computation (pp. 393-400).
Wierstra, D., Schaul, T., Glasmachers, T., Sun, Y., Peters, J., & Schmidhuber, J. (2014). Natural evolution strategies. In Journal of Machine Learning Research, 15(1) (pp. 949-980).
In the pseudo code the algorithm does:
- For n iterations do:
Sample individuals z from multinormal search distribution with parameters mu, sigma
s <- sample from N(0,1) z <- mu + sigma * s
If mirrored sampling is enabled, also sample individuals with opposite perturbations s
z <- [mu + sigma * s, mu - sigma * s]
evaluate individuals z and get fitnesses F_i(z)
Update the parameters of the search distribution as
mu_{t+1} <- mu_{t+1} + eta_mu * sigma * sum(F_i * s_i) sigma_{t+1} <- sigma_t * exp(eta_sigma / 2 * sum(F_i * (s_i ** 2 - 1))
If fitness shaping is enabled, F_i is replaced with the utility u_i in the previous step, which is calculated as:
u_i = max(0, log(n/2 + 1) - log(k)) / sum_{k=1}^{n}{max(0, log(n/2 + 1) - log(k))} - 1 / n
where k and i are the indices of the individuals in descending order of fitness F_i
- Parameters
traj (Trajectory) – Use this trajectory to store the parameters of the specific runs. The parameters should be initialized based on the values in parameters
optimizee_create_individual – Function that creates a new individual. All parameters of the Individual-Dict returned should be of numpy.float64 type
optimizee_fitness_weights – Fitness weights. The fitness returned by the Optimizee is multiplied by these values (one for each element of the fitness vector)
parameters – Instance of
namedtuple()
NaturalEvolutionStrategiesParameters
containing the parameters needed by the Optimizer
-
post_process
(traj, fitnesses_results)[source]¶ See
post_process()
NaturalEvolutionStrategiesParameters¶
-
class
l2l.optimizers.naturalevolutionstrategies.optimizer.
NaturalEvolutionStrategiesParameters
(learning_rate_mu, learning_rate_sigma, mu, sigma, mirrored_sampling_enabled, fitness_shaping_enabled, pop_size, n_iteration, stop_criterion, seed)¶ Bases:
tuple
- Parameters
learning_rate_mu – Learning rate for mean of distribution
learning_rate_sigma – Learning rate for standard deviation of distribution
mu – Initial mean of search distribution
sigma – Initial standard deviation of search distribution
mirrored_sampling_enabled – Should we turn on mirrored sampling i.e. sampling both e and -e
fitness_shaping_enabled – Should we turn on fitness shaping i.e. using only top fitness_shaping_ratio to update current individual?
pop_size – Number of individuals per simulation.
n_iteration – Number of iterations to perform
stop_criterion – (Optional) Stop if this fitness is reached.
seed – The random seed used for generating new individuals
-
property
fitness_shaping_enabled
¶
-
property
learning_rate_mu
¶
-
property
learning_rate_sigma
¶
-
property
mirrored_sampling_enabled
¶
-
property
mu
¶
-
property
n_iteration
¶
-
property
pop_size
¶
-
property
seed
¶
-
property
sigma
¶
-
property
stop_criterion
¶